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Abstract—Human behavior analysis is an important area of
research in computer vision and is also driven by a wide
spectrum of applications, such as smart video surveillance and
human–computer interface. In this paper, we present a novel
approach for human behavior analysis. Two research challenges,
motion representation and behavior recognition, are addressed.
A novel motion descriptor, which is an improved feature based
on optical flow, is proposed for motion representation. Optical
flow is improved with a motion filter, and feature fusion with the
shape and trajectory information. To recognize the behavior, the
support vector machine is employed to train the classifier where
the concatenation of histograms is formed as the input features.
Experimental results on the Weizmann behavior database and
the Institute of Automation, Chinese Academy of Science real-
world multiview behavior database demonstrate the robustness
and effectiveness of our method.

Index Terms—Human behavior, motion analysis, optical flow,
surveillance.

I. Introduction

HUMAN BEHAVIOR analysis is an important area of re-
search in computer vision devoted to detecting, tracking,

and understanding people’s physical behaviors. This research
is driven by a wide spectrum of applications in various
areas such as smart video surveillance [1], interactive virtual
reality systems [2], advanced and perceptual human–computer
interfaces [3], content-based video storage and retrieval [4],
sports performances analysis and enhancement [5], clinical
studies [6], smart rooms and ambient intelligence systems [7],
and so forth. A survey of recent research can be found in [8].
The application area in this paper is video surveillance.

In video surveillance people are tracked and monitored for
particular actions. The demand for smart video surveillance
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systems is due to the large number of security-sensitive areas
such as banks, department stores, parking lots, etc. and the vast
numbers of images collected from these areas by surveillance
cameras. Surveillance camera video streams are often stored
in video archives or recorded on tapes. Most of the time,
these video streams are only used “after the fact,” mainly
as an identification tool. There is a need for real-time video
analysis, for example to alert security staff if a criminal act is
in progress.

The behavior analysis framework is shown in Fig. 1. It con-
sists of feature extraction, basic behavior description and com-
plex behavior description. Complex behaviors are composed of
many single behaviors with the temporal relations. Most work
of behavior analysis focuses on feature extraction and behavior
description, which are connected closely. According to the
features used for analysis, the behavior analysis methods can
be classified into three kinds: spatial-based (such as shape),
motion-based (such as trajectory) and spatial-temporal-based
methods. We give an introduction to these three types of
feature based methods and propose our method based on a
novel motion descriptor.

A. Shape-Based Features

Shape-based features have been commonly used in behavior
analysis based on contour or silhouette information. In [10],
the authors extracted 3-D shape for recognizing human pos-
ture using support vector machines. While for 3-D methods,
point correspondences are needed with high accuracy, which
costs high computation. 2-D shapes are extracted in [11] for
behavior analysis. In [11], the authors use the Canny edge
detector to extract shape and some key frames are applied for
recognizing behaviors. For more complex activity analysis,
different body shape features are employed in many studies
[12], [13]. Sato and Aggarwal have developed a hierarchical
method for human interaction behaviors, the poses (shape) of
body parts are estimated at the low level and the overall poses
are recognized at high level [12]. Park et al. extract silhouettes
to classify more detailed interactions such as “pointing at the
other person,” “shaking hands,” etc. [13].

B. Spatial-Temporal-Based Features

Space-time approaches for behavior analysis have been
widely used in recent years. In [14], the empirical distributions
of space-time gradients are collected from an entire video clip
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Fig. 1. Framework for behavior analysis.

to recognize a single behavior. However, this method did not
capture a detailed geometric description of the behavior. In
[15], the authors propose a 3-D space-time video-template
correlation for recognizing dynamic action, which needs high
computation cost. In [16], Yilmaz and Shah use a two-step
graph theoretical approach to generate a spatial temporal vol-
ume (STV), which can solve the point correspondence problem
between consecutive frames. They then compute the action
descriptors by analyzing the differential geometric properties
of the STV. Similarly, in [17], Laptev and Lindeberg extend
the 2-D Harris detector to 3-D, to find a sparse set of space-
time corner points, while maintaining scale invariance. But
there are so few such points in a typical motion that the method
may be badly affected by occlusions or by misdetections of
these corner points. M. Blank uses the Poisson equation to
extract space-time features such as corners, local space-time
saliency, behavior dynamics and shape orientation, and then
integrates these local features into a compact vector of features
to represent an action [18], while it costs high computation to
solve the Poisson equation. In a word, the spatial-temporal-
based features provide more information for behavior analysis,
so the discriminative performance is high, while the compu-
tation cost is also high.

C. Trajectory-Based Features

Trajectory-based approaches have often been proposed for
outdoor behavior analysis. In [20], Stauffer et al. acquired a
set of concept prototypes by using online vector quantization
of trajectories. Then they used hierarchical clustering to obtain
several motion routes in an outdoor surveillance scene. Based
on these motion routes, a single person event in the scene
(“one person goes from entrance A to exit B,” etc.) can be
recognized.

A trajectory on its own does not provide enough detailed
information about behavior. Local motion descriptors are
required. In [21], Ribeiro et al. evaluated the performance
of two large sets of features for recognizing five categories
of human activity such as walking, running, fighting, etc.
The first set consists of trajectory-based features, such as
velocity. The second set is based on estimates of the optical
flow or instantaneous pixel motion inside a bounding box.
Then the authors investigated a hierarchical classifier with
different combinations of features. In [22], Robertson et al.

Fig. 2. Two factors between camera and objects: angle and distance.

proposed a combined approach to recognize single person ac-
tions that are described by trajectory information (position and
velocity), and a set of local motion descriptors (coarse optic
flow).

Trajectories are also very useful for recognizing multiper-
son behaviors. In [23], Galata et al. proposed an automatic
approach to learn several qualitative spatial relations of primi-
tive object interactions. They first extract primitive units from
the trajectories of single person, then the variable length
Markov model is used to infer the temporal structure of typical
interactive behavior. In [24], Oliver et al. extracted the relative
distance, the derivative of the relative distance, the degree
of alignment of the moving directions and the magnitudes
of their velocities of two pedestrians to make a feature
vector describing their activity. Then coupled hidden Markov
models are used for modeling the evolving relative spatial
relationships.

In Table I, we compare three types of features which
are often used for behavior analysis. Shape features and
spatial-temporal features are often used for single person
behavior analysis, motion features can be used for interactive
person behavior. The favored camera view is also differ-
ent for the three types of features. For shape and spatial-
temporal features, the object should be close to the cam-
eras and the width of the field of view should be limited
to about 30°. Under these conditions, the shape features
can be extracted better. Trajectory-based motion features are
used if the camera is some distance away from the object,
while there is no obvious distance limitation on the use of
optical flow. Motion-based features have lower discrimina-
tive performance compared with shape and spatial temporal-
based features, but they can be computed more quickly,
making motion-based features more useful in real-time
applications.

According to the above analysis, we find that optical flow
features are more robust than other features in different
views and cost lower computation, while the discrimina-
tive performance of optical flow-based feature cannot satisfy
the requirements of view invariant behavior analysis. We
improve the optical flow feature and find a novel motion
descriptor that uses both shape and trajectory information.
We test our method not only on a public behavior database
(Weizmann behavior database) but also on the Institute of
Automation, Chinese Academy of Science (CASIA) multiview
real world behavior database. Experimental results show that
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TABLE I

Comparison of Three Types of Features Used for Behavior Analysis

Feature Application Favored Angle Viewa Discriminative
Performance

Computational Cost

Shape
(contour, silhouette)

Single person
behavior

Near distance and
horizontal view
(0–30°)

High Medium

Motion
(trajectory)

Simple single person behavior
and interactive behavior

Far distance
view
(30–90°)

Low Low

Optical flow No limitation
Spatial-temporal (ST, STV, . . . .) Single person behavior Near distance and horizontal

view (0–30°)
High High

aThe angle and distance between objects and camera referred to Fig. 2

Fig. 3. Object detection and tracking results. (a) Running in horizontal view.
(b) Walking in horizontal view. (c) Running in vertical view. (d) Wandering
in vertical view.

our method is robust and effective, and that the computational
cost is relatively low.

This paper is organized as follows. In Section II, we give
the description of CASIA behavior database. The detection
and tracking methods are given in Section III. In Section
IV, the improved optical flow-based method is presented in
detail and a lot of experimental results and evaluation based
on our challenging database (CASIA behavior database) and
Weizmann behavior database are given in Section V. Conclu-
sion will be given in Section VI.

II. CASIA Behavior Database

The CASIA behavior database contains image sequences of
11 actions, each performed three times by 24 actors (13 males/
11 females). Every action is captured by three cameras at the
same time in different views: horizontal view (HV: 0–30°),
vertical view (VV: 60–90°) and bird’s eye view (BV: 30–60°).
Every view includes seven types of single-person behav-
iors (walking, running, jumping, bending, crouching, lying,
wandering) and four types multiperson interactive behaviors
(meeting, robbing, following, fighting) as shown in Table II.
Each sequence is about 8–10 s.

III. Object Detection and Tracking

Currently, we use Gaussian mixture functions to model the
probabilistic distributions of image pixel values, and we update
the parameters of all stochastic models following Stauffer and
Grimson [20]. Then we employ the point (center of mass)
representation to describe each detected object and make use
of the nearest neighbor criterion to track moving objects.
Meanwhile, we exploit Kalman filtering to predict the position
and size of tracked objects. When object occlusion happens,
the predicted values are used to replace object states at last
time instant. One limitation of the current tracking algorithm
lies in trajectory crossings and object merging. Hence we em-
ploy two strategies to solve this problem. One is scale-invariant
feature transform descriptor [6] based appearance matching.
The other is to combine the nearest neighbor criterion with
particle filtering-based probabilistic inference. Fig. 3 illustrates
some detection and tracking results.

IV. Improved Optical Flow-Based Behavior

Analysis

A. Problems in Optical Flow-Based Behavior Analysis

Shapes, trajectories and optical flow are often used for
behavior analysis. The use of shape features is better in near
distances and horizontal view, while trajectory features are
suitable for distant objects and vertical views. In comparison
with shape and trajectory features, optical flow is better in
view and distance invariance, so optical flow is an intu-
itive choice for behavior analysis [25]–[29]. Simple global
velocity and a global orientation are often extracted from
optical flow to analyze the behaviors [26]–[28]. In [29], the
authors combine optical flow with other features to improve
its performance. However, optical flow has not been so far
successful for behavior analysis because of two problems, the
first problem is the effect of noise on the computation of
optical flow. The second problem is the low discriminative
performance.

1) Noises and Errors: Errors and noises will lead to inaccu-
rate features during the optical flow computation, e.g.,
direction, speed, and so on [30]. We compute optical
flow using the Horn–Schunck algorithm [34]. As shown
in Fig. 4, the left image gives the original bending person
behavior and the middle image gives the flow field with
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TABLE II

CASIA Behavior Database [33]

Walking Running Jumping Bending Crouching Wandering Lying

HV

VV

BV

(a) Single-person behaviors

Meeting Robbing Following Fighting

HV

VV

BV

(b) Multiperson interaction behaviors

the noises and errors. Compared with the right image
(correctly optical flow), the flow field in the middle
image will cause low accuracy for behavior analysis.

2) Low Discriminative Performance: Optical flow is of-
ten extracted as global feature, which does not
contain enough information to discriminate different
behaviors. As shown in Fig. 5, the bending behavior
and the falling behavior have the same optical flow,
which causes the failure to discriminate these two
behaviors.

We define a motion descriptor based on improved optical
flow feature. Two aspects are considered to be robust and
discriminative motion descriptor: 1) making full use of optical
flow feature considering local patches information, and 2) an
improved descriptor is formed fusing the trajectory, shape and
optical flow features, which is effective in different views and
cost low computation. With the computer of P4 3.0 GHz CPU
and 1.5 GB RAM, the processing time for one single frame of
320 × 240 is about 6 ms, which is appropriate for real-time
applications.

B. Improved Motion Descriptor with Optical Flow Features
In this part, we put forward the new motion representa-

tion based on optical flow for behavior analysis, which also
combines trajectory and shape cues. The framework is shown
in Fig. 6 and the details of feature extraction are given as
following.

1) Motion Filtering: As we have mentioned above, noises
and errors in optical flow computation will affect the dis-
criminative power of extracted features for behavior analysis.
Noises and errors are mainly affected by camera quality,
video transmission or camera vibration and so on as shown in
Fig. 7.

Here, instead of considering how noise and error affect op-
tical flow, which is very difficult to analyze due to complexity
of the calculation of optical flow, we analyze the image quality
statistical information about the effects of noise and errors on
the optical flow. As we can see in Fig. 8, the speed distribution
of noise, optical flow and error can be modeled as a Gaussian
distribution, respectively. Obviously, the noise and error are
in the different parts of the distribution, the noise is in the
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Fig. 4. Noises and errors in the optical flow field. We compute optical
flow using the Horn–Schunck algorithm [34]. (a) Noise and error examples.
(b) Optical flow example of bending behavior.

Fig. 5. Two behaviors: bending and falling.

Fig. 6. Flowchart of our motion descriptor.

Fig. 7. Noise and error for optical flow.

Fig. 8. Optical flow distribution of bending behavior. We compute optical
flow using the Horn–Schunck algorithm [34]. Noises, optical flow, and errors
can be modeled as a Gaussian distribution.

Fig. 9. Framework of motion descriptor.

left and the error is in the right of the distribution. We can
remove the noise and error by thresholding the magnitude
of the optical flow to get a robust estimation of optical
flow [30].

a) Noise due to random perturbations of short optical flow
vectors. Magnitude < VL.

b) Error due to a random optical flow vector with a large
magnitude. Magnitude > VH .

The VL and VH stand for the threshold of low and high
magnitude. We estimate the thresholds according to the size
and speed of normalized blob. So we can reduce noise and
error of optical flow with the help of blob (coarse shape) and
trajectory.

First, optical flow is normalized in both size and time
scale as (1), where ρnk(i, j) indicates the normalized speed of
optical flow for pixel ρk(i, j) in the kth frame. F is the video
frame rate according to the compression rate, 25 frames/s in
our video data

ρnk(i, j) =
F × ρk(i, j)√
Hu2

k + Wu2
k

(1)

where Huk and Wuk are the height and width of the union of
human blobs in the (k−1)th and the kth frames. Then the first
derivative of blob position (∇x, ∇y) and trajectory (Xnk

, Ynk
)

in the kth frame are normalized. Third, the threshold [α β] is
determined as

[α β] =

⎧⎨
⎩

[α1 β1],
√

Xn2
k + Yn2

k < tt

[α2 β2],
√

Xn2
k + Yn2

k > tt
(2)

where tt is the criteria of normalized trajectory speed between
low and high speed. Here tt is 1.5 by choosing walking and
running as reference motion for low speed motion and high
speed motion, respectively.
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Fig. 10. Direction assignment. (a) Direction histogram bin. (b) Relative
majority direction.

Fig. 11. VDD value. (a) Small VDD implies complex motion pattern.
(b) Large VDD implies simple motion pattern.

Fig. 12. Divergence of direction distribution. Motion pattern with same
MDP may have different DDD.

2) Motion Descriptor by Fusing Three Cues: In the
above step, we compute optical flow using the Horn–Schunck
algorithm [34], then the noises and errors are removed to
obtain a robust optical flow feature. However, it is not enough
to discriminate many categories behaviors. To improve the
discriminative performance, on one hand, we will extract more
features from optical flow by considering local patches. On
the other hand, we will combine the optical flow with other
features such as shape and trajectory as shown in Fig. 9.

a) Feature extraction from local optical flow computa-
tion: After thresholding, we separate the optical flow of one
object into N×N blocks. Each block is numbered from the 1st
to the (N ×N)th, the optical flow of the whole blob is labeled
as the zeroth block. We then compute the direction histogram
of each block with the eight bins as shown in Fig. 10(a) and
normalized to get NDij, i = 0, ..., N × N, j = 1, ...., 8 and∑8

j=1 NDij = 1.
For the optical flow of whole blob and each block, the

following statistical features are extracted.
Valid Pixel Portion (VPP): Valid pixels are defined after

thresholding. The valid pixel portion is calculated as

VPPi =
dim{PVi}
dim{PAi} (3)

where PVi is the set of valid pixels in the ith block and PAi

is the set of all pixels in the ith block, dim{} is the operator
used to compute the number of pixels.

Fig. 13. Comparison of our method with common optical flow feature in
three different views. (a) Deference between the original and our optical flow
descriptor. (b) Results of two descriptors in three views.

Fig. 14. Test results on our database. Four sets of test results are given for
N = 2, 3, 4, 5, respectively. The test results are given by sequence.

Average Speed (AS): Instead of computing average optical
flow, we make use of average speed because the average
optical flow is not accurate to represent the motion speed of
a block. A special case is that average optical flow doesn’t
correctly represent the motion speed level in its region. The
average speed is calculated as

ASi =
1

dim {PV i}
∑

P(u,v)∈PVi

p(u, v). (4)

Relative Majority Direction (RMD): Majority direction is
the direction of valid pixels and is computed as

MDi = arg max
j=1,...,8

{NDij} (5)
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TABLE III

Recognition Results For N = 5 in Three Views. We Achieve An Average Recognition Rate of 92.49% by Sequence

Vertical View Bend Crouch Faint Jump Run Walk Recognition
Rate

Bend 22 0 0 0 0 1 95.65%
Crouch 0 24 0 0 0 0 100.00%
Faint 0 2 4 0 0 0 66.67%
Jump 0 1 0 20 1 1 86.96%
Run 0 0 0 0 24 0 100.00%
Walk 0 0 0 1 0 22 95.65%
Horizontal
View

Bend Crouch Faint Jump Run Walk Recognition
Rate

Bend 20 0 0 0 0 0 100.00%
Crouch 0 19 1 0 0 0 95.00%
Faint 0 0 6 0 0 0 100.00%
Jump 1 0 0 17 1 1 85.00%
Run 0 0 0 2 16 0 88.89%
Walk 0 0 0 0 0 14 100.00%
Birdeye View Bend Crouch Faint Jump Run Walk Recognition

Rate
Bend 22 0 0 2 0 0 91.67%
Crouch 0 22 2 0 0 0 91.67%
Faint 0 1 5 0 0 0 83.33%
Jump 0 0 0 19 1 4 79.17%
Run 2 0 0 1 20 0 86.96%
Walk 0 0 0 0 0 24 100.00%

TABLE IV

Robustness Test Against Irregular Activities on CASIA Database: Table Shows the Percent of Frames That Are Correctly

Classified, in Cases N = 2 and N = 5

Test Sequences N = 2 N = 5
First Best Second Best First Best Second Best

Normal walk Walk 77.55% Jump 12.24% Walk 53.06% Run 30.61%
Walking in a skirt Walk 100.00% NA NA Walk 89.74% Bend 5.13%
Carrying briefcase Walk 100.00% NA NA Walk 98.96% Jump 1.04%
Limping man Walk 100.00% NA NA Walk 94.38% Bend 3.37%
Occluded legs Walk 100.00% NA NA Walk 94.55% Run 3.64%
Knees up Walk 100.00% NA NA Walk 87.50% Jump 10.71%
Walking with a dog Walk 93.75% Run 6.25% Walk 93.75% Run 6.25%
Sleep walking Walk 83.33% Jump 10.42% Walk 87.50% Run 10.42%
Swinging a bag Walk 100.00% NA NA Walk 100.00% NA NA
Occluded by a “pole” Walk 85.11% Run 14.89% Walk 89.36% Run 10.64

TABLE V

Robustness Test Against Irregular Activities on Weizmann Database: The Table Shows the Percent of Frames That Are

Correctly Classified, in Cases N = 2 and N = 5

Test Sequences N = 2 N = 5
First Best Second Best First Best Second Best

Normal walk Walk 56.25% Jack 20.83% Walk 75.00% Jack 10.42%
Walking in a skirt Walk 68.09% Side 25.53% Walk 95.74% Skip 4.26%
Carrying briefcase Walk 51.28% Side 43.59% Walk 76.92% Side 23.08%
Limping man Walk 92.73% Bend 3.63% Walk 89.09% Wave1 9.09%
Occluded legs Walk 66.67% Side 16.67% Walk 93.75% Skip 4.17%
Knees up Walk 91.01% Wave1 6.74% Walk 86.52% Wave1 10.11%
Walking with a dog Walk 94.79% Jack 3.13% Walk 88.54% Jack 8.33%
Sleep walking Walk 58.93% Side 25.00% Walk 76.79% Jump 16.07%
Swinging a bag Walk 79.59% Side 12.24% Walk 91.84% Jack 2.04%
Occluded by a “pole” Walk 92.86% Side 7.14% Walk 100.00% NA NA
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where MDi is the majority direction of the ith block. Relative
majority direction of each block is assigned relative to the
whole optical flow majority direction as shown in Fig. 10(b).
This feature represents the motion direction of the block
relative to the whole body motion direction and is calculated
as

RMDi = mod(MDi − MD0) − 8 × (mod(MDi−MD0, 8) ≥ 4)
(6)

where MD0 is the majority direction and mod(MDi − MD0)
can get value from 0 to 7, the latter part can get 0 or 8, then the
RMD can be obtained from −4 to 3 as shown in Fig. 10(b).

Majority Direction Portion (MDP): This feature describes
the motion direction the motion in the corresponding block is.
It is calculated as

MDPi = max
j=1,...,8

{NDij}. (7)

Variance of Direction Distribution (VDD): The direction
histogram describes the direction distribution and this feature
represents how complex the motion pattern is in the corre-
sponding block as shown in Fig. 11. It is calculated as

VDDi =
1

8

8∑
j=1

(NDij − NDi)2. (8)

Divergence of Direction Distribution (DDD): The diver-
gence of direction distribution is an auxiliary feature for MDP
as shown in Fig. 12 and is calculated as

DDDi =
8∑

j=1

NDij × RMD{(j − arg max
l=1,...8

{NDil})}2 (9)

where the RMD{} indicates the mapping method as mentioned
in calculating RMD.

b) Features fusion: Besides the above local features
from optical flow, we additionally employ some assistant
features from shape and trajectory—blob size as Hk × Wk,
blob ratio Wk

/
Hk, acceleration of trajectory in the vertical

direction as ∇2Yk. In the fusion stage, for simplification, we
just consider the linear combination mode [32], and the weight
of every feature is the same. Other complex fusion methods
can also be considered, while it is not the task here. Then
we have the final motion representation of (5 + 6N2 + 3)
dimensions, which is much smaller than the dimensions of
original optical flow. Compared with common optical flow-
based descriptors, our motion descriptor is discriminative and
effective in different three views on our behavior database as
shown in Fig. 13.

c) Classifiers: Many supervised learning algorithms can
be employed to train a behavior pattern recognizer. Support
vector machine (SVM) [35] is used in our approach. SVM
has been successfully applied to a wide range of pattern
recognition and classification problems because it is fast and
deterministic. The concatenation of features obtained above
is fed as a feature vector into support vector machine. The
radial basis function k (x, y) = exp(−λ ‖x − y‖) is utilized to
map training vectors into a high dimensional feature space for
classification.

Fig. 15. Sequence classification on Weizmann database. All results are from
nine runs in a leave-one-out procedure with N = 4. The method correctly
classifies 93.33% of all testing sequences.

Fig. 16. Frame classification on Weizmann database. All results are from
nine runs in a leave-one-out procedure with N = 4. The method correctly
classifies 82.37% of all testing frames.

Fig. 17. Irregular walking sequences, from left to right and top to bottom:
swinging a bag, walking with a briefcase, walking with the knees up, walking
with a limp, sleepwalking, occluded feet, normal walking, occluded by a
“pole,” walking in a skirt, walking with a dog.
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TABLE VI

Robustness Test Against Horizontal Viewpoint Change on CASIA Database

Test Sequence First Best Second Best
Walking in 0° Walk 98.53% Run 1.47%
Walking in 5° Walk 100.00% NA NA
Walking in 10° Walk 100.00% NA NA
Walking in 15° Walk 100.00% NA NA
Walking in 20° Walk 100.00% NA NA
Walking in 25° Walk 98.80% Crouch 1.20%
Walking in 30° Walk 98.53% Crouch 1.47%
Walking in 40° Walk 62.73% Crouch 24.55%
Walking in 45° Walk 79.55% Crouch 12.50%

V. Experimental Results and Analysis

Our approach has been evaluated on two databases, one is
CASIA multiview behavior database and another is a publicly
available database (Weizmann action database [18]). The ex-
perimental results show the improvement of our approach over
the baseline method.

A. Results on CASIA Behavior Database [33]

We test our method on this database with N = 2, 3, 4, 5.
The test results are shown in Fig. 14. It is apparent that the
results for the vertical and horizontal viewpoints are better
than those obtained from the bird’s eye view. It is reason-
able given that people are smaller and many behavior types
look similar from the bird’s eye view. The recognition rate
increases as N increases, but for larger N the improvement of
recognition rate is small. From Table III, our method performs
well in different views (overall recognition rate: horizontal
view 95%, vertical view 90%, bird’s eyes view 89%), which
verified that the proposed method is robust to viewpoint
variation. It is reasonable that the results in horizontal view
achieve best because shape information can be extracted better.
The results from vertical view and bird’s eye view are similar
as the shape information is not helpful for these views, while
optical flow and trajectory information are both extracted
better. To improve the discriminative ability of optical flow,
we improve it from two aspects: 1) optical flow computation,
especially the noise removal, and 2) the more information
is considered as trajectory and shape information, which
could provide the complementary information from different
viewpoints.

B. Results on Weizmann Database [18]

For comparisons, we follow the leave-one-out strategy:
video clips of one subject are kept as testing data and other
video clips are training data. We evaluate the performance of
our method in frame-by-frame classification as well as video
sequence classification. The confusion tables are shown in
Figs. 15 and 16 when N = 4. Compared with Niebles et al.’s
result [31] of 72.8% by sequence and 55.0% by frame, our
method obtained better performance of 93.3% by sequence
and 82.37% by frame1. It is noticed that confusions are mostly

1It should be mentioned that Niebles et al. [31] used the unsupervised
learning method. The video sequence is represented by spatial-temporal
patches and this method does not use background subtraction.

among jump, run and skip behaviors, which is reasonable
because they are very similar to each other. The method by
Black et al. [18] performs very well (97.5%) on this database,
while this method considers the space-time shape as feature,
which costs high computation in solving the Poisson equation
and extracting features (110 × 70 × 50 videos need about
30 s on a P 4.3 GHz computer with MATLAB language).
Our method can process a frame of size 320 × 240 about
6 ms with computer of P4 3.0 GHz CPU and 1.5 GB RAM.
This processing time is sufficiently low to allow real-time
applications.

C. Robustness Evaluation

To evaluate the robustness of our method, we consider
both irregular activities and the change of horizontal view in
behavior recognition.

D. Robustness Test Via Irregular Activities

The database of irregular activities [18] shown in Fig. 17,
which includes nine irregular walking sequences under differ-
ent conditions and one normal walking sequence.

We test the robustness on the irregular activities database.
Tables IV and V give results when N = 2 and N = 5 on
CASIA database and Weizmann database. From Table IV, the
overall recognition rates are 94% and 89% when N = 2 and
5 on CASIA database. From Table V, the overall recognition
rates are 75% and 88% when N = 2 and N = 5 on Weizmann
database. The “walking” behavior can be recognized correctly
both on CASIA database and Weizmann database, which
shows that our method is robust against irregular activities
of various types.

E. Robustness Test Via Horizontal Viewpoint Changes

The database of horizontal viewpoint changes con-
tains walking sequences with horizontal viewpoint change
of {0°, 5°, 10°, 15°, 20°, 25°, 30°, 40° and 45°}, respectively.
Fig. 18 shows some example frames for each viewpoint.

Tables 6 and 7 show the classification results when N = 3.
Other values of N lead to similar results. As we can see, the
recognition rates of “walk” behavior are 91% and 80% on
CASIA database and Weizmann database, which shows that
our method is robust against horizontal view changes. On both
databases, the results of the last two test sequences are worse
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TABLE VII

Robustness Test Against Horizontal Viewpoint Change on Weizmann Database

Test Sequence First Best Second Best
Walking in 0° Walk 89.71% Side 8.82%
Walking in 5° Walk 95.31% Jump 1.56%
Walking in 10° Walk 98.46% Side 1.54%
Walking in 15° Walk 96.05% Side 2.63%
Walking in 20° Walk 94.81% Jump 2.60%
Walking in 25° Walk 87.95% Jump 6.02%
Walking in 30° Walk 73.53% Bend 11.76%
Walking in 40° Walk 33.64% Jump 21.82%
Walking in 45° Jump 48.86% Jack 17.05%

Fig. 18. Horizontal viewpoint change data. From top to bottom and left to
right are horizontal viewpoint changes of {0°, 5°, 10°, 15°, 20°, 25°, 30°, 40°,
and 45°}, respectively.

than other results because the shape information from these
two viewpoints (40° and 45°) cannot be helpful.

VI. Conclusion

Behavior analysis is important for many applications such
as visual surveillance and human computer interaction. View
invariant behavior analysis has become a hot topic in recent
years. In this paper, based on the analysis of features for
behavior analysis, we proposed a novel motion descriptor
based on improved optical flow for view invariant behavior
analysis. We improve the optical flow by first removing noises
and errors removal and then fusing the optical flow information
with trajectory and shape information.

To evaluate our method, we have tested on CASIA database
(ranging over 11 behaviors, with three views for each type
of behavior) and Weizmann behavior database. The exper-
imental results show the advantages of our method: It is
real-time with good classifying performance; it is effective
from three different viewpoints and robust against horizontal
viewpoint change; it is also robust against irregular activi-
ties under varying conditions. In the future work, we will
continue to investigate how to evaluate the effectiveness of
different features in the fusion step and improve the fusion
algorithms.
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